Quantum internet: A vision for the road ahead
Quantum internet: A vision for the road ahead
A quantum
internet may very well be the first quantum information technology to
become reality. Researchers at QuTech in Delft, The Netherlands, today
published a comprehensive guide towards this goal in Science.
It describes six phases, starting with simple networks of qubits that
could already enable secure quantum communications – a phase that could
be reality in the near future. The development ends with networks of
fully quantum-connected quantum computers. In each phase, new
applications become available such as extremely accurate clock
synchronization or integrating different telescopes on Earth in one
virtual ‘supertelescope’. This work creates a common language that
unites the highly interdisciplinary field of quantum networking towards
achieving the dream of a world-wide quantum internet.
A
quantum internet will revolutionize communication technology by
exploiting phenomena from quantum physics, such as entanglement.
Researchers are working on technology that enables the transmission of
quantum bits between any two points on earth. Such quantum bits can be
‘0’ and ‘1’ at the same time, and can be ‘entangled’: their fates are
merged in such a way that an operation on one of the qubits instantly
affects the state of the other.
This brings two features which
are provably out of reach for the Internet that we know today. The first
is that entanglement allows improved coordination between distant
sites. This makes it extremely suitable for tasks such as clock
synchronization or the linking of distant telescopes to obtain better
images. The second is that entanglement is inherently secure. If two
quantum bits are maximally entangled, then nothing else in the universe
can have any share in that entanglement. This feature makes entanglement
uniquely suitable for applications that require security and privacy.
Many
other applications of a quantum internet are already known, and more
are likely to be discovered as the first networks come online.
Researchers at QuTech, a collaboration between Delft University of
Technology and the Netherlands organisation for applied scientific
research TNO have now set forth stages of quantum internet development
distinguished by technological capabilities and corresponding
applications.
The lowest stage of a true quantum network – a
prepare and measure network – allows the end-to-end delivery of quantum
bits between any two network nodes, one quantum bit at a time. This is
already sufficient to support many cryptographic applications of a
quantum network. The highest stage is the long-term goal of connecting
large quantum computers on which arbitrary quantum applications can be
executed.
In
addition to providing a guide to further development, the work sets
challenges both to engineering efforts and to the development of
applications. “On the one hand, we would like to build ever more
advanced stages of such at network”, says Stephanie Wehner, lead author
of the work, “On the other hand, quantum software developers are
challenged to reduce the requirements of application protocols so they
can be realized already with the more modest technological capabilities
of a lower stage.” Co-author Ronald Hanson adds: “This work establish a
much-needed common language between the highly interdisciplinary field
of quantum networking spanning physics, computer science and
engineering.”
The first true quantum networks, allowing the
end-to-end transmission of quantum bits, are expected to be realized in
the coming years, heralding the dawn of a large-scale quantum internet.
