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1. Abstract 

We report on our recommendations on an overaching architectural style for all software development tasks related to building a 

Quantum Internet. First we list requirements and characteristics of Quantum Internet applications. Then we give an overview of 

constraints that applications must adhere to, as well as constraints on any software development related to developing the Quantum 

Internet. Based on these requirements constraints, we list design considerations and possible architectural styles that affect various 

components in the Quantum Internet software stack. For each of these considerations, we provide recommendations regarding 

design choices. 

2. Keyword list 

Quantum Internet, Quantum networks, Architecture, Design, Applications 

3. Acronyms & Abbreviations 

QI Quantum Internet 

DQC Distributed Quantum Computing 

BQC Blind Quantum Computation 

WP Work package 
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4. Introduction 

The development of the software for a Quantum Internet stack needs to take into account (1) the types of applications that are 

intended to run and (2) the constraints that are imposed by the properties of quantum physics and low-level hardware. These two 

elements lead to design considerations and recommended architectural styles. 
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5. Quantum Internet applications 

5.1. Properties of Quantum Internet applications 

The Quantum Internet (QI) is intended to run arbitrary applications, that may have different levels of complexity [1]. In general, they 

are multi-node applications which consist of single-node programs. These programs may  execute classical or quantum operations, 

which may be entirely local or interacting with another node. Indeed, operations can be any of the following: (1) local classical 

processing or calculation, (2) local quantum gates, (3) sending or receiving classical messages, or (4) generating entanglement with 

a remote node. These operations may interleave and depend on each other in arbitrary ways. 

The different kinds of operations (such as classical vs quantum) call for hybrid processing components in order to execute such 

applications. Furthermore, the dependencies between local and quantum operations require application control to move between 

the classical and quantum domain, at runtime, while keeping quantum states in memory. Therefore, Quantum Internet applications 

typically require longer quantum memory lifetimes compared to quantum computing. This requirement is further strengthened by the 

fact that QI applications involve remote communication and synchronization with non-deterministic latencies. 

QI applications are different from distributed quantum computing applications. A distributed quantum computing applications consists 

of a large computations spread over multiple quantum processing units, which are globally orchestrated by the same person/program. 

QI applications, on the other hand, involve programs run by multiple independent parties that each have their own goals, privacy, 

and sources of randomness interacting with each other using well-defined protocols. QI applications are not globally orchestrated, 

which is a key feature required to guarantee their security and privacy. An example of a QI application is Blind Quantum Computing 

(BQC), where a client node interacts, through remote entanglement and classical communication, with a server node while hiding 

the computational goal from said server. Such scenarios call for the independent programming, compiling, and executing of program 

code on each of the nodes. 

5.2. Requirements of Quantum Internet applications 

QI application programmers may specify certain requirements to be met at runtime. These include (1) fidelity of certain quantum 

states, such as local qubits or remote-entangled pairs, (2) fidelity or success probability of an application, (3) qubit timing 

deadlines, i.e. an expiration mechanism for decohered qubits, or (4) rate or throughput of an application or application part such as 

entanglement generation. 

5.3. Application representation and execution 

Application logic should be specified in the form of program code. Code must be specified for each of the nodes participating in the 

QI application. The program code should be sufficiently high-level that the programmer can focus on the application logic itself, and 

does not need to worry about the underlying platform details such as hardware parameters and classical-quantum dependencies. 
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Therefore, program code should be platform-independent, and allow for specifying both classical and quantum operations without 

knowledge of how these are handled in lower layers. 

Quantum computing programs are typically represented as quantum circuits. In this representation, an explicit view of memory 

locations (individual qubits) is provided to the programmer. The programmer can then indicate operations on these memory 

locations (such as quantum gates), which have certain side-effects, such as the quantum state in memory being changed. In QI 

application programming, the focus is shifted towards quantum values, which live somewhere but it does not matter to the 

programmer exactly where these live. Such a model is more compatible with existing programming paradigms and therefore more 

approachable. 

Finally, QI applications may find themselves waiting at runtime for further input, for example when expecting a message from a 

remote node before continuing. As a result a QI node will not be using its resources all the time and may be idling from time to 

time. This makes it desirable for quantum network nodes to be able to run multiple applications at the same time, in order to 

maximize the utilization of the available quantum resources. The situation of multiple active applications at the same time calls for 

a model that allows each application to have its own (quantum) memory but at the same time not interfere with the (quantum) 

memory of other applications. 

 

6. Quantum Internet properties and constraints 

6.1. Noisy quantum memory and processing 

Quantum memory is inherently noisy. Two main factors lead to decreased quality of states inside quantum memory: quantum gate 

imperfections causing quality degradation with each application, and decoherence causing constant quality degradation with time 

(that is, the quality degrades by itself, over time). This means that quantum states cannot stay in quantum memory for very long, 

and that many gate applications are detrimental to memory quality. Furthermore, in general, not all physical qubits in a node can 

be used for remote entanglement generation. There is hence a distinction between communication and memory qubits. Gates may 

be applied on only some (combinations of) qubits. Finally, different qubits may have different hardware characteristics such as 

coherence times (how long they can resist decoherence). 

These characteristics have an impact on the implementation of compilers and quantum control software. The lower software 

components need to be aware of the distinction between communication and memory qubits. Furthermore, the compiler also 

needs to be aware of this distinction, and on top of that needs to be aware of the different characteristics of all qubits in order to 

produce optimized executable code. 
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6.2. Entanglement generation 

Entanglement generation between two remote nodes is a complex process and generally requires many attempts before it the 

qubits will be successfully entangled. On some platforms, such as the NV-center based platforsm in QIA, this has an impact on the 

fidelity of quantum states that are already in memory while these entanglement attempts take place. Furthermore, it is currently not 

possible to produce perfect entanglement. QI applications are also in general limited by a certain rate of entanglement production 

that is achievable with that particular hardware. 

Software in the control stack needs to be aware of the potential fidelities and rates certain links can provide. Lower layers need to 

be able to handle (possibly deny) certain demands from higher layers, such as a request from an application to produce 

entanglement with a certain fidelity and rate. 

 

7. Styles and recommendations 

All the above considerations have been taken into account in the specification of a quantum network programming language called 

NetQASM [3]. Therefore, an application developer using the NetQASM SDK will be able to easily produce applications that follow 

our recommendations for programming style. The paper describing NetQASM, its design considerations and decisions is attached 

to this deliverable in the appendix. 

Below, we summarise the key design considerations and recommentations of the general approach (style) in which to handle 

these. 
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7.1. Platform (in)dependence 

 

Application code, which interacts with the highest (most abstract) level of the software stack (see Figure 1, and the other Tasks of 

this WP), should be platform-independent. Somewhere further down the stack, however, platform-specifics must be taken into 

account, so that the lowest level is fully platform-dependent. The question is at which levels platform specifics must still be 

provided. We recommend to keep platform-specific details as low as possible, in order for higher layers to be developed 

independently of lower layers. However, we recognize the need for platform-specific optimizations in higher layers, especially in the 

near future where hardware is still underdeveloped, such as short memory lifetimes. Therefore, we do recommend adding, on top 

of platform-independent functionality, plafform-specific optimization interfaces. As an example, the NetQASM interface allows the 

specification of hardware-specific flavours, which may be used by a compiler to produce executable code that is optimized for a 

specific hardware platform. 

7.2. Timing control 

Quantum memory and operations are time-sensitive. Low-level control of quantum resources requires precise timing, and quantum 

memory itself is affected by time. QI applications have non-deterministic timing of operations, due to communication- and 

synchronization latencies, and due to uncontrolled behavior of other nodes. Therefore, a distinction is to be made between real-

time components of the software stack, and non-real-time components. We recommend a clear division between components with 

real-time guarantees, and components where timing is not guaranteed. These latter components should implement control 

mechanisms, such as expiry- and retry-mechanisms in order to meet high-level timing requirements. 

Figure 1: Software stack on a single node 
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7.3. Application representation 

QI Applications consists of different kinds of operations. These must all be expressable in application program code. We 

recommend a clear separation between classical and quantum code, such that they can be handled by separate software 

components. However, for the programmer this separation must not be visible. Furthermore, in order to compile and optimize 

across the whole application, a uniform representation is needed encompassing all kinds of operations, including classical 

processing, classical communciation, quantum processing, and quantum entanglement generation. This can then be used as an 

intermediate representation for compilers that can optimize this. Further, in the application representation for the programmer, we 

recommend a memory model that focuses on values rather than circuits with side-effects. A model using values is more compatible 

with existing programmer paradigms and therefore more approachable. 

7.4. Execution model 

We note the hybrid nature of applications, consisting of both classical and quantum operations. We recommend a division into an 

“Application layer” component, and a “controller” (QNodeOS) component, for each node (see also Figure 1). These components 

may only be logically separated, and not necessarily physically. The Host should be responsible for heavy classical processing and 

classical communication with other nodes; QNodeOS should be responsible for executing local quantum operations as well as 

remote entanglement generation. Execution of the application is hence shared between the Host and QNodeOS, and this needs to 

be coordinated. We recommend the NetQASM interface to do so, which also includes a shared memory model. For more 

infomration see, [3]. The Host/QNodeOS separation may be compared to the co-processer execution model in classical computing. 

Applications must be compiled from high level program code into an executable format. Although compilation can happen on the 

fly, i.e. at runtime, and this may be easier to implement. However, we recommend ahead-of-time compilation. This allows heavy 

optimization which may take a long time, which is not desirable at runtime since quantum memory quality degrades over time.  

7.5. Network stack 

We aim to implement the quantum network stack proposed in [2], see also 

Figure 2. The goal of this stack is to separate different concerns into 

different layers and to abstract away these concerns into clear interfaces 

for the other layers. Applications should be able to use the interfaces 

provided by at least the Network layer, and possibly the Transport layer. 

The functionality of the Transport layer may be incorporated into the 

application itself. In contrast with the classical Internet stack, where the 

service needed by the application is to send or receive messages (i.e. 

“transport”), in the QI, applications also require a service for providing correlations, which would fall to the Network layer. 

Therefore, the Network layer should be directly accesible to the application. We recommend implementing the layers of the 

network stack (excluding the applicatoin layer) inside QNodeOS. The application then interacts with the stack through the 

NetQASM interface. 

Figure 2: The Quantum Network Stack 
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8. Conclusion 

We reported on our recommendations on an overaching architectural style for all software development tasks related to building a 

Quantum Internet. by listing design considerations and possible architectural styles that affect various components in the Quantum 

Internet software stack. For each of these considerations, we provided recommendations regarding design choices. 
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NetQASM - A low-level instruction set architecture for hybrid quantum-classical
programs in a quantum internet

Axel Dahlberg,1, 2, ∗ Bart van der Vecht,1, 2, ∗ Carlo Delle Donne,1, 2 Matthew
Skrzypczyk,1, 2 Ingmar te Raa,1, 2 Wojciech Kozlowski,1, 2 and Stephanie Wehner1, 2

1QuTech, Lorentzweg 1, 2628 CJ Delft, Netherlands†
2Kavli Institute of Nanoscience, Delft, The Netherlands

We introduce NetQASM, a low-level instruction set architecture for quantum internet applications.
NetQASM is a universal, platform-independent and extendable instruction set with support for local
quantum gates, powerful classical logic and quantum networking operations for remote entanglement
generation. Furthermore, NetQASM allows for close integration of classical logic and communication
at the application layer with quantum operations at the physical layer. This enables quantum
network applications to be programmed in high-level platform-independent software, which is not
possible using any other QASM variants. We implement NetQASM in a series of tools to write,
parse, encode and run NetQASM code, which are available online. Our tools include a higher-level
SDK in Python, which allows an easy way of programming applications for a quantum internet.
Our SDK can be used at home by making use of our existing quantum simulators, NetSquid and
SimulaQron, and will also provide a public interface to hardware released on a future iteration of
Quantum Network Explorer.

I. INTRODUCTION

Quantum mechanics shows that if one is able to communicate quantum information between nodes in a network, one
is able to achieve certain tasks which are impossible using only classical communication. There are many applications [1]
where a quantum network has advantage over a classical (non-quantum) network, either by (1) enabling something that
is theoretically impossible in a classical network, such as the establishment of an unconditionally secure key [2] and
secure blind quantum computing [3] or (2) allowing something to be done faster or more efficiently such as exponential
savings in communication [4] and extending the baseline of telescopes [5]. In recent years, many experiments have been
conducted to show that a quantum network is not only a theoretical concept, and indeed advancements have been
made to implement such a quantum network on various hardware platforms. [6–12]. However, these experiments alone
do not yet make a quantum network programmable, since the program logic was hard-coded into the experimental
hardware ahead of time.1

Before considering how to program quantum network applications, let us first briefly sketch the system our applications
are run on. Abstractly, quantum networks consist of nodes that are connected by channels (fig. 3). Classical channels
enable classical communication between nodes, while quantum channels are used for entanglement generation between
nodes. So-called end-nodes may contain quantum processors that can run arbitrary (quantum) programs. They
have access to a quantum memory consisting of qubits, on which they can perform operations, including quantum
computations. Some of these qubits may be used for establishing an entangled quantum state with a remote node. An
end-node also possesses a classical processor and a classical memory. Furthermore, an end-node can send and receive
classical messages to and from other end-nodes in the network. A network of quantum networks may be a called a
quantum internet.

Quantum (network) processors differ from classical processors in a number of ways. Firstly, quantum memory has
limited lifetime, meaning that its quality degrades over time. For example, quantum memories based on nitrogen-
vacancy (NV) centers in diamond have impressively been optimized to achieve lifetimes in the order of seconds [13];
however, this is still very short compared to classical memories, which generally do not have a limited lifetime at all.
Therefore, the quality of program execution is time-sensitive. Secondly, physical devices are prone to inaccuracies
which lead to decreased quality of (quantum) computation. For example, applying an operation (like a gate) on a
qubit affects that qubit’s quality. We note that the two challenges mentioned so far are also inherent to non-network
quantum processors. Quantum network processors have additional challenges: (1) the processor may have to act
as a local computation unit and a network interface at the same time; for example, in NV centers, an electron spin

∗These authors contributed equally.
†Contact: b.vandervecht@tudelft.nl, s.d.c.wehner@tudelft.nl
1 There have been examples of experiments with some simple logic but only with a very limited number of pre-loaded decision-branches.
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qubit is used for generating entanglement with a remote node but is also needed to do local two-qubit gates, (2)
remote-entanglement operations may not have a fixed time in which they complete, which makes scheduling and
optimization more difficult.

Quantum network applications, also called protocols, are multi-partite programs that involve entanglement generation
and classical communication between different end-nodes, as well as local computation. Examples include Quantum
Key Distribution (QKD) [2, 14], leader election protocols [15, 16], and Blind Quantum Compuation (BQC) [1]. Such
applications are split into distinct programs each of which runs on a separate end-node. The programs consist of both
local operations (classical and quantum) and network operations (classical and quantum), see fig. 1. That is, the
programs communicate either by passing classical messages, or by establishing quantum entanglement. For example,
BQC involves a client node and a server node, both of which run their own program. Their joint execution looks
roughly as follows: (1) The client and server engage in remote entanglement generation such that the server’s quantum
memory ends up being in a certain state, (2) the client sends instructions to the server in the form of a classical
message, (3) the server performs a measurement-based computation on its own quantum memory based on the client’s
instructions, (4) the server sends measurement results back to the client, (5) the client sends new instructions based on
the measurement results, (6) repeat steps 3 to 5 until the client obtains its desired result.
The example above illustrates that quantum network programs consist of different types of operations. Indeed,

program code consists of classical code, containing local classical operations and classical communication with other
nodes, and quantum code, which are operations on quantum memory (such as gates) and remote entanglement
generation. Blocks of these types of code may depend on each other in multiple ways, as depicted in fig. 2. Programs
with mixed classical and quantum operations have also been called dynamic quantum circuits [17, 18], but these do not
cover the networking dimension found in programs we consider here, such as the dependency on remote information
and entanglement generation operations.
Due to the nature of quantum network programs, execution may have to wait for some time. For example, the

program needs to wait until another node sends a classical message, or until remote entanglement has been established.
Therefore, it makes sense to run multiple (independent) quantum network programs on a node at the same time
(interleaved), so that processor idle times can be filled by execution of other programs. This is something that typically
does not happen on local quantum computers, and therefore introduces new challenges.
Quantum network applications may be programmed by a single actor. For example, a developer may program a

QKD application in the form of a two programs, and distribute these two programs to two end-nodes in the network.
Alternatively, a single-node quantum network program may be developed separately from other programs, possibly
not knowing how these other programs are implemented. For example, a BQC service provider could have already
implemented the server-side program of a specific BQC protocol. A client may then write the client-side of this
protocol, without having control over the server-side implementation.

The aim of this work is to propose a way to program quantum network programs and execute them on the end-nodes
of a quantum network.

A. Contribution

In this work we introduce an abstract model—including a quantum network processing unit (QNPU)— for end-nodes
in a quantum network, which we define in section II. We then propose NetQASM, an instruction set architecture that can
be used to run arbitrary programs (of the form described in fig. 2) on end-nodes, as long as the end-nodes realize the
model including the QNPU.

NetQASM consists of a specification of a low-level assembly-like language to express the quantum parts of quantum
network program code. It also specifies how the application layer should interact with the QNPU and how the assembly
language can be used to execute (network) quantum code. This is not possible using other QASM languages.

The NetQASM language is extendible using the concept of flavors. The core language definition consists of a common
set of instructions that are shared by all flavors. This common set contains classical instructions for control-flow and
classical memory operations. This allows the realization of low-level control logic close to the quantum hardware;
for example, to perform branching based on a measurement outcome. Quantum-specific instructions are bundled in
flavors. We introduce a vanilla flavor containing universal platform-independent quantum gates. Using this flavor of
the NetQASM language enables the platform-independent description of quantum network programs. Platform-specific
flavors may be created to have quantum operations that are native and optimized for a specific hardware platform. As
an example, we show a flavor tailored to the Nitrogen-Vacancy (NV) hardware, a promising platform for quantum
network end-nodes [19, 20].

In our model, application-specific classical communication only happens at the application layer (fig. 1). In particular,
this means that NetQASM contains no provision for classical communication with the remote node. We remark that of
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FIG. 1: A quantum network application consists of a program for each of the nodes involved in the application. Each
program is locally executed by the node. Program execution on each node is split into execution in an application
layer, which can send and receive classical messages, and a quantum processor, which can create entanglement with

another node. The communication between nodes can hence be both classical and quantum. Communication
instructions need to be matched by corresponding instructions in the other program. There is no global actor

overseeing execution of each of the programs, and the nodes may be physically far apart.

FIG. 2: A program on a single node consists of different blocks of code, which can be quantum (pure quantum
instructions with classical control in between), or classical (no quantum operations at all). These blocks may depend
on each other in various ways. For example, the outcome of a measurement happening in one of the quantum blocks
may be used in a calculation performed in one of the classical blocks. Blocks may also depend on other nodes. For
instance, the value of a message coming from another node can influence the branch taken in one of the classical blocks.

course, classical control communication may be used by the QNPU to realize the services of the quantum network stack
accessed through NetQASM.
With NetQASM we solve various problems that are unique to quantum internet programming: (1) for remote

entanglement generation, we introduce new instruction types for making use of an underlying quantum network
stack [21, 22], (2) for the close interaction between classical and quantum operations, we use a shared-memory model
for sharing classical data between the application layer and the QNPU, (3) in order to run multiple applications on the
same quantum node—which may be beneficial for overall resource usage (see section IV)— we make use of virtualized
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quantum memory, similar to virtual memory in classical computing [23], (4) since on some platforms, not all qubits
may be used to generate remote entanglement, we introduce the concept of unit-modules describing qubit topologies
with additional information per (virtual) qubit about which operations are possible.

Since NetQASM is meant to be low-level, similar in nature to classical assembly languages, we have also developed
a higher-level software development kit (SDK), in Python, to make it easier to write applications. This SDK and
related tools are open-source and freely available at [24], as part of our Quantum Network Explorer [25]. Through the
SDK we have also enabled the quantum network simulators NetSquid [26] and SimulaQron [27] to run any application
programmed in NetQASM.

We have evaluated NetQASM by simulating the execution of a teleportation application and a blind quantum computation
using NetQASM. Hereby we have shown that interesting quantum internet applications can indeed be programmed using
NetQASM. Furthermore, the evaluations argue certain design choices of NetQASM, namely the use of so-called unit modules,
as well as platform-specific flavors.
We remark that NetQASM has already been used on a real hardware setup in the lab, in a highly simplified test case

that only produces entanglement [28].

B. Related Work

In the field of quantum computing, a substantial amount of progress has been made related to developing architectures
(e.g. [29–36]), instruction sets (e.g. [37–45]) and compilers [46–59]. One example is QASM, an instruction set framework,
borrowing ideas from classical assembly languages, which has gained a lot of popularity over the years and has been
successfully integrated in software stacks for quantum computers. There are in fact many variants of QASM such as
OpenQASM [37], cQASM [38], eQASM [39], f-QASM [40]. Some of these variants are at a level closer to the physical implementation,
such as eQASM, allowing for specifying low-level timing of quantum operations, while others, such as f-QASM, are at
a higher level. Together with the definition of these QASM-variants, progress has also been made in compilation of
applications programmed in QASM to hardware implementations. More abstract languages and programming frameworks
for quantum programs include Quil [41], Qiskit [42], Cirq [43], Q# [44], QuEST [45].
None of these instruction sets or languages contain elements for remote entanglement generation (i.e. between

different nodes), which NetQASM does provide. A NetQASM program that uses the vanilla flavor and only contains local
operations would look similar to an OpenQASM program. However, the instruction set is not quite the same, since NetQASM
uses a different memory model than OpenQASM. This is due to the hybrid nature of quantum network programs, which
has more interaction between classical data and quantum data than non-networking programs (for which OpenQASM
might be used). So, NetQASM is not just a superset of the OpenQASM instruction set (in the sense of adding entanglement
instructions).
In [27], we introduced the CQC interface, which was a first step towards a universal instruction set. However, CQC

had a number of drawbacks, in particular: (1) CQC does not have a notion of virtualized memory (see section IV),
which meant that applications needed to use qubit IDs that were explicitly provided by the underlying hardware. This
introduced more communication overhead and fewer optimization opportunities for the compiler. (2) CQC does not
provide as much information about hardware details. Therefore, platform-specific compilation and optimization is not
possible. (3) Furthermore, CQC does not match entirely with the later definition of our quantum network stack [21, 22].
For example, it was not clearly defined how CQC relates to the definition of a network layer.

Many of the ideas from e.g. QASM for how to handle and compile local gates can be reused also for quantum network
applications. For example, version 3 of OpenQASM [17] which is under development, proposes close integration between
local classical logic and quantum operations, which is something we also propose in this work. However, there are two
key differences that we need to address:

1. Instructions for generating entanglement between remote nodes in the network need to be handled and integrated
with the rest of the application, see section II B below.

2. The local operations performed by a node might depend on information communicated by another node and
only known at runtime. Note that this is different from the conditionals on local classical information, proposed
in for example OpenQASM version 3, which does not require communication between remote nodes in a network.
This brings new constraints in how to handle memory allocation, scheduling and addressing. We discuss this
point in further detail in the coming sections.

NetQASM solves the above two points and improves upon CQC.



5

C. Outline

In section II we define relevant concepts and introduce the model of end-nodes that we use, including the QNPU.
In section III we discuss use-cases of a quantum network which NetQASM should support. In section IV we consider
requirements and considerations any instruction set architecture for quantum networks should fulfill which then lay
the basis for the decisions that went into developing NetQASM, see section V. In section VI and section VII we describe
details about the NetQASM language and associated SDK. In section VIII we quantitatively evaluate some of the design
decision of NetQASM by benchmarking quality of execution using the quantum network simulator NetSquid [26, 60]. We
conclude in section IX.

II. PRELIMINARIES AND DEFINITIONS

A. Quantum networks

A schematic overview of quantum networks is given in fig. 3. A quantum network consists of end-nodes (hereafter
also: nodes), which contain quantum network processors as well as classical processors. Nodes are connected by
quantum channels or links that can be used to generate entangled quantum states across nodes. End-nodes possess
quantum memory in the form of qubits, which can be manipulated by performing operations such as initialization,
readout, and single- or multi-qubit gates. Each quantum memory has a certain topology that describes which operations
can be applied on which (pair of) qubits. Some of the qubits in a quantum memory may be used to generate an
entangled state with another node. These qubits are called communication qubits [21], in contrast to storage qubits
which can only directly interact with other qubits part of the same local node2.

Some platforms only have a single communication qubit and multiple storage qubits [61], whereas others can have
multiple communication qubits [11]. Qubits are sensitive to decoherence and have limited lifetimes. Therefore, the
timing and duration of operations (such as local gates or entanglement generation with another node) have an impact
on the quality of quantum memory. Classical processors control the quantum hardware, and also perform classical
computation. Finally, classical links exist between nodes for sending classical messages.
Since end-nodes can control their memory and entanglement generation, they can run arbitrary user programs.

End-nodes can both communicate classically and generate entanglement between each other, either directly or through
repeaters and routers, (fig. 3). Nodes in the network other than end-nodes, such as repeaters and routers, do not
execute user programs; rather these run protocols that are part of some level in the network stack [21, 22]. These
internal nodes in the network perform elementary link generation and entanglement swapping in order to generate
long-distance remote entanglement between end-nodes [21].
There are various quantum hardware implementations for quantum network processors, such as nitrogen-vacancy

centers in diamond [61], ion traps [8], and neutral atoms [9, 62], which all have different capabilities and gates that can
be performed.

In contrast to classical networks, we consider the end-nodes in a quantum network to not have a network interface
component that is separated from the main processing unit. Having local and networking operations combined in a
single interface reflects the physical constraint on current and near-term hardware. Current state-of-the-art hardware
for quantum networking devices can make use of up to the order of 10 qubits [63]. Furthermore, certain hardware
implementations, such as nitrogen-vacancy centers in diamond [61], only have a single communication qubit, which
also acts as a mediator for any local gate on the storage qubits. This prevents dedicating some qubits for purely local
operations and some for purely networking operations. Rather, to make maximal use of near-term quantum hardware,
a multi-purpose approach needs to be supported.

B. Application layer and QNPU

In this work we will assume an abstract model of the hardware and software architecture of end-nodes in a quantum
network. Specifically, we assume each end-node to consist of an application layer and a Quantum Network Processing
Unit (QNPU). The application layer can be also be seen as a the user space of a classical computer, and the QNPU as a
coprocessor.

2 A storage qubit may however hold a state that is entangled with a qubit in another node: after remote entanglement generation using a
communication qubit, the state in that local qubit could be transferred to one of the storage qubits, preserving the remote entanglement.
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FIG. 3: Abstract model of a quantum network and its components. Quantum network applications run on the
end-nodes (blue). Their communication via classical message passing and quantum entanglement (fig. 1) is abstracted
away by a network stack. That is, it is not visible at the application layer how entanglement generation or classical
message passing is realized. This may be via direct physical connections, or intermediary repeaters and/or routers.
End-nodes hold two types of qubits: (1) communication qubits which can be used to generate entanglement with

remote nodes and (2) storage qubits which can be used to store quantum states and apply operations. A
communication qubit may also be used as a storage qubit. The qubits within an end-node can interact through

quantum gates and their state can be measured.

This model takes into account both physical- and application-level constraints found in quantum network programming.
The QNPU can be accessed by the application layer, at the same node, to execute quantum and classical instructions.
We define the capabilities of the QNPU, and roughly their internal components, but do not assume how exactly this is
implemented. In the rest of this work, we simply use the QNPU as a black box.
The QNPU can do both classical and quantum operations, including (1) local operations such as classical arithmetic

and quantum gates and (2) networking operations, i.e. remote entanglement generation. The application layer cannot
do any quantum operations. It can only do local computation and classical communication with other nodes. In terms
of classical processing power, the difference between the application layer and the QNPU is that the application layer can
do heavy and elaborate computation, while we assume the QNPU to be limited in processing power.

The application layer can interact with the QNPU by for example sending instructions to do certain operations. The
application layer and the QNPU are logical components and may or may not be the same physical device. It is assumed
that there is low latency in the communication between these components, and in particular that they are physically
part of the same node in the network.

One crucial difference between the application layer and the QNPU is that the application layer can do application-level
classical communication with other end-nodes, while the QNPU cannot. The QNPU can communicate classically to
synchronize remote entanglement generation, but it does not allow arbitrary user-code classical communication. We
use this restriction in order for the QNPU to have relatively few resource requirements.

The QNPU consists of the following components, see fig. 4:

• Processor: The processor controls the other components of the QNPU and understands how to execute the
operations specified by the application layer. It can read and write data to the classical memory and use this
data to make decisions on what operations to do next. It can apply quantum gates to the qubits in the quantum
memory and measure them as well. Measurement outcomes can be stored in the classical memory.

• Classical memory: Random-access memory storing data produced during the execution of operations, such as
counters, qubit measurement outcomes, information about generated entangled pairs, etc.
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FIG. 4: Overview of QNPU components and interfaces. The application layer talks to the QNPU using NetQASM. The
processor inside the QNPU can interact with all other components. Channels are connecting components with

corresponding components in adjacent nodes in the network.

• Quantum memory: Consists of communication and storage qubits, see section IIA, on which quantum gates
can be applied. The qubits can be measured and the resulting outcome stored in the classical memory by the
processor. The communication qubits are connected through a quantum channel to adjacent nodes in the quantum
network, through which they can be entangled. This quantum channel may also include classical communication
needed for synchronization, phase stabilization or other mechanisms needed in the specific realization.

• Quantum network stack: Communicates classically with other nodes and quantum repeaters in the network to
synchronize the generation of remote entanglement, and issues low-level instructions to execute the entanglement
generation procedures, see [21, 22].

We stress that the internals of the QNPU are not relevant to the design of NetQASM. We do assume that the QNPU only
has limited classical processing power, and can therefore be implemented on for example a simple hardware board.

C. Applications and programs

As mentioned in section I, quantum network applications (or protocols) are multi-partite and distributed over
multiple end-nodes. The unit of code that is executed on each of the end-nodes that are part of the application, is
called a program. We will use this terminology throughout the rest of the paper.

As mentioned in the previous section, the end-nodes are modeled such that there is an application layer and a QNPU.
We assume that execution of quantum network programs is handled by the application layer. How exactly the program
is executed, and how the QNPU is involved herein, is part of the NetQASM proposal.

III. USE-CASES

In the next section we will discuss the design considerations taken when developing NetQASM. These design considera-
tions are based on a set of use-cases listed in this section which we intend for NetQASM to support. Applications intended
to run on a quantum network will often depend on a combination of these use-cases.

• Local quantum operations. Applications running on a network node need to perform quantum operations on
local qubits, including initialization, measurement, and single- or multi-qubit gates. Such local qubit manipulation
is well known in the field of quantum computing. For example, OpenQASM [37] describes quantum operations.
Quantum network applications should be able to do these local operations as well.
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• Local quantum operations depending on local events or data. The next use-case stems from applications
consisting of programs in which limited classical computation or decision making is needed in-between performing
quantum operations. Here we consider only dependencies in a program between quantum operations and
information that is produced locally, that is, on the node that this program is being executed. For instance, a
program might only apply a quantum gate on a qubit depending on the measurement outcome of another qubit,
or choose between execution branches based on evaluation of a classical function of earlier measurement outcomes.
An example is for the server-side of blind quantum computation, which performs a form of Measurement-Based
Quantum Computation (MBQC). In each step of the MBQC, the server performs certain gates on a qubit,
depending on results of measuring previous qubits [64]. These applications need classical operations to not take
too much time, so that qubit states stay coherent during these operations. This implies that switching between
classical and quantum operations should have little overhead.

• Entanglement generation. Crucial to quantum networks is the ability to generate remote entanglement.
Applications should be able to specify requests for entanglement generation between remote nodes. In some
cases, a Measure-Directly (MD) [21] type generation is required, where entangled state is measured directly,
without storing in memory, to obtain correlated classical bits, such as in Quantum Key Distribution (QKD).
However, in many cases a Create-Keep (CK) [21] type is needed, where the entanglement needs to be stored in
memory and further operations applied involving other qubits. We want applications to be able to initiate or
receive (await) entanglement of both forms with nodes in the network.

• Local quantum operations depending on remote events or data. We already mentioned the use-case
of having conditionals based on local information. We also envision applications that need to store qubits and
subsequently perform local quantum operations on them and other local qubits, based on classical information
coming from another node. An example is teleportation in which the receiver—after successful entanglement
generation—needs to apply local quantum corrections based on the measurement outcomes of the sender. Another
application is blind quantum computation, where the server waits for classical instructions from the client about
which quantum operations to perform. Hence, there need to be integration of classical communication (sending
the measurement results or further instructions) and the local quantum operations. Furthermore, since classical
communication has a non-zero latency (and is in general even non-deterministic), it should be possible to suspend
doing quantum operations while waiting for communication or performing classical processing, while quantum
states stay coherent.

• Waiting time. We consider the scenario where an application requires two nodes to communicate with each
other, and where communication takes a long time, for example since they are physically far apart. It should be
possible for a program to suspend doing quantum operations while waiting for communication or performing
classical processing, while quantum states stay coherent. Furthermore, in order to maximize the usage of the
QNPU we want to have a way to fill this waiting time in a useful way.

IV. DESIGN CONSIDERATIONS

In this section we review the most important design considerations and requirements that were applied when
developing NetQASM. Our proposed solutions to these design considerations are presented in the next section, with more
details about NetQASM as a language in the subsequent sections.

• Remote entanglement generation: One of the main differences compared to the design considerations of
a quantum computing architecture is that of remote entanglement generation (see the use-case in section III).
Nodes need to be able to generate entanglement with a remote node, which requires the collaboration and
synchronization of both nodes, and possibly intermediate nodes, which is handled by the network stack (section II).
Further requirements arise in platforms with a limited number of communication qubits. The extreme case is
nitrogen-vacancy centers in diamond which have a single communication qubit that additionally is required for
performing local operations. For this reason it is not possible to decouple local gates on qubits from entanglement
generation. We note the contrast with classical processors, where networking operations are typically intrinsically
separate kinds of operations. For example, operations such as sending a message may simply involve moving
data to a certain memory (e.g. that of a physically separate network interface), which is often abstracted as a
system call.
A quantum network stack has already been proposed in [21, 22], and we expect the QNPU of the end-node to
implement such a stack, including a network layer that exposes an interface for establishing entanglement with
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remote nodes. The way in which a program creates remote entanglement should therefore be compatible with
this network layer.

• Conditionals: In section III we mentioned the need to do local quantum operations conditioned on classical
data that may be generated locally or by remote nodes. Such classical data include for example measurement
results or information communicated to or from other nodes in the network. We distinguish between real-time
and near-time conditionals [17]. Real-time conditionals are time-sensitive, such as applying a certain quantum
operation on a qubit depending on a measurement outcome. For such conditionals, we would like to have fast
feedback, in order for quantum memory not to wait too long (which would decrease their quality). Near-time
conditionals are not as sensitive to timing. For example, a program may have to wait for a classical message of a
remote node, while no quantum memory is currently being used. Although it is preferably minimized, the actual
waiting time does not affect the overall execution quality.

• Shared memory: As described in section II, we expect end-nodes to consist of an application layer and a
QNPU. These two components have different capabilities. For example, only the application layer has the ability
to do arbitrary classical communication with other nodes. Only the QNPU can do quantum operations. These
restrictions lead the design in a certain way. The two components hence need to work together somehow. There
needs to be model for interaction between the two, and also for shared memory.
Executing programs on an end-node is shared by the application layer and the QNPU (see section II B). Indeed, only
the QNPU can do quantum-related operations, whereas the application layer needs to do classical communication.
In order to make these work together, the two components have to share data somehow. This includes the
application layer requesting operations on the QNPU, and sending the following from the QNPU to the application
layer: (1) measurement outcomes of qubits, (2) information about entanglement generation, in particular a way
to identify entangled pairs. This communication between application layer and QNPU needs to be done during
runtime of the program. This is in contrast to local quantum computation, where one might wait until execution
on the QNPU is finished before returning all data. The challenge for quantum network programs is to have a way
to return data while quantum memory stays in memory.

• Processing delay: Since we assume that the application layer and the QNPU have to share execution of a single
program, the interaction between the two layers should be efficient. Unnecessary delays lead to reduced quality
(see section I). The challenge is therefore to come up with an architecture for the interaction between the
application layer and the QNPU, as well as a way to let QNPU execution not take too long.

• Platform-independence: As explained in section I, hardware can have many different capabilities and gates
that can be performed. However, application programmers should not need to know the details of the underlying
hardware. For this reason, there needs to be a framework through which a programmer can develop an application
in a platform-independent way which compiles to operations the QNPU can execute.

• Potential for optimization: Since near-term quantum hardware has a limited number of qubits and qubits
have a relatively short lifetime, the hardware should be utilized in an effective way. There is therefore a need to
optimize the quantum gates to be applied to the qubits. This includes for example choosing how to decompose
a generic gate into native gates, rearranging the order of gates and measurements and choosing what gates to
run in parallel. Since different platforms have vastly different topologies and gates that they can perform, this
optimization needs to take the underlying platform into account. The challenge is to have a uniform way to
express both platform-independent and platform-specific instructions.

• Multitasking: The ‘Waiting time’ use-case in section III describes that a node’s QNPU may have to wait a long
time. We consider the solution that the QNPU may do multitasking, that is, run multiple (unrelated) programs at
the same time. Then, when one program is waiting, another program can execute (partly) and fill the gap. To
make our design compatible with such multitasking, we need to provide a way such that programs can run at the
same time as other programs, but without having to know about them.

• Ease of programming: Even though NetQASM provides an abstraction over the interaction with the QNPU, it is
still low-level and hence not intended to be used directly by application developers. Furthermore, applications
also contain classical code that is not intended to run on the QNPU. Therefore it should be possible to write
programs consisting of both classical and quantum (network) operations in a high-level language like Python,
and compile them to a hybrid quantum-classical program that uses NetQASM.
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V. DESIGN DECISIONS

Based on the use-cases, design considerations and requirements, we have designed the low-level language NetQASM as
an API to the QNPU. In this section we present concepts and design decisions we have taken. Details on the mode of
execution and the NetQASM-language are presented in section VI.

A. Interface between application layer and QNPU

1. Execution model

As described in section II, and also in section IV program execution is split across the application layer and the QNPU.
Since the QNPU is assumed to have limited processing power (section II), our design lets the application layer do most of
the classical processing. The program blocks (fig. 2) are hence spread over two separate systems: blocks of purely
classical code are executed by the application layer, and blocks of quantum code (containing both quantum operations
and limited classical control) are executed by the QNPU.

The quantum code (including limited classical control) is expressed using the NetQASM language. The classical code is
handled completely by the application layer, and we do not impose a restriction to its format. In our implementation
(section VII), we use Python. This classical code on the application layer also handles all application-level classical
communication between nodes, since it cannot be done on the QNPU.
We let the application layer initiate a program. Whenever quantum code needs to be executed, the application

layer delegates this to the QNPU. Since processing delay should be minimized (section IV), the communication between
application layer and QNPU should be minimized. Therefore, NetQASM bundles the quantum operations together into
blocks of instructions, called subroutines, to be executed on the QNPU. A program, then, consists of both both classical
code and quantum code, and the quantum code is represented as one or more subroutines. These subroutines can be
seen as the quantum code blocks of fig. 2.
For most programs, we consider subroutines to be sent consecutively in time. However, if the QNPU supports it,

NetQASM also allows to send multiple subroutines to be executed on the QNPU at the same time, although this requires
some extra care when dealing with shared memory. From the perspective of the QNPU, a program consists of a series
of subroutines sent from the application layer. Before receiving subroutines, the application layer first registers a
program at the QNPU. The QNPU then sets up the classical and quantum memories (see below) for this program. Then,
the application layer may send subroutines to the QNPU for execution.

2. Shared classical memory

Since classical and quantum blocks in the code (as per fig. 2) can depend on each other, the application layer and
the QNPU need to have a way to communicate information to each other. For example, a subroutine may include a
measurement instruction; the outcome of this measurement may be used by the application layer upon completion of
the subroutine. Therefore, NetQASM uses a shared memory model such that conceptually both layers can access and
manipulate the same data. This solves the need to return data, and to do conditionals (section IV).
Each program has a classical memory space consisting of registers and arrays. Registers are the default way of

storing classical values, like a measurement outcome. In the example of the application layer needing a measurement
outcome, there would be an instruction in the subroutine saying that a measurement outcome needs to be placed in a
certain register. The application layer can then access this same register (since they share the memory space) and
use it in further processing. The number of registers is small, and constant for each program. Arrays are collections
of memory slots (typically the slots are contiguous), which can be allocated by the program at runtime. Arrays are
used to store larger chunks of data, such as parameters for entanglement requests, entanglement generation results, or
multiple measurement outcomes when doing multiple entangle-and-measure operations. The application layer may
only read from the shared memory; writing to it can only be done by issuing NetQASM instructions such as set (for
registers) and store (for arrays). The QNPU may directly write to the shared memory, for example when entanglement
finished and it writes the results to the array specified by the program.

3. Unit modules

In order to support systems with multitasking (section IV), NetQASM provides a virtualized model of the quantum
memory to the program. This allows the QNPU to do mapping between the virtualized memory and the physical memory
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FIG. 5: Program interaction between the application layer and a quantum device in both the case of hybrid-quantum
computing (fig. 5a) and quantum networks (fig. 5b). In the case of hybrid-quantum computing, qubits are reset in
between circuits (in e.g. QASM). For quantum internet programs the qubits should on the other hand be kept in

memory, since they might be entangled with another node and intended to be used further.

and perform scheduling between programs.
The quantum memory for a program is represented by a unit module (fig. 6). A unit module defines the topology of

the available qubits (which qubits are connected, i.e. on which qubit pairs a two-qubit gate can be executed), plus
additional information on each qubit. This additional information consists of which gates are possible on which qubit
or qubit pair. It also specifies if a qubit can be used for remote entanglement generation or not. The extra information
is needed since on some platforms, not all qubits can be used for entanglement generation and different qubits may
support different local gates. For example, in a single NV-centre, there is only one communication qubit and any
additional qubits are storage qubits. Also, the communication qubit can do different local gates than the storage
qubits.
A single program has a single quantum memory space, which is not reset at the end of a subroutine, which is in

contrast with quantum computing. This allows the application layer to do processing while qubits are in memory. The
following sequence of operations provides an example. (1) The application layer first sends a subroutine containing
instructions for entanglement generation with a remote node R. (2) The QNPU has finished executing the subroutine,
and informs the application layer about it. There is now a qubit in the program’s memory that is entangled with
some qubit in R. (3) The application layer does some classical processing and waits for a classical message from (the
application layer of) R. (4) Based on the contents of the message, the application layer sends a new subroutine to
the QNPU containing instructions to do certain operations on the entangled qubit. The subroutine can indeed access
this qubit by using the same identifier as the first subroutine, since the quantum memory is still the same. We note
the contrast with (non-network) quantum computing, where quantum memory is reset at the end of each block of
instructions (fig. 5).
Unit modules contain virtual qubits. This is because of the requirement that it should be possible to run multiple

programs at the same time on a single QNPU (section IV). Qubits in the unit module are identified by a virtual ID. The
QNPU maps virtual IDs to physical qubits. A program hence uses a virtual memory space (the unit module), and does
not have to know about the physical memory.
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q0
{ crot_x, crot_y }

q1

{ crot_x, crot_y }

q2

{ rot_x, rot_y, rot_z } { rot_x, rot_y, rot_z }

{ meas, rot_x, rot_y, rot_z }

communication qubit

memory qubit

two-qubit gate

FIG. 6: Example of a unit-module topology on a platform using nitrogen-vacancy centers in diamond. A unit-module
is a hypergraph [65], with associated information on both nodes and edges. Each node represents a virtual qubit,

containing information about (1) its qubit type (communication or storage), (2) physical properties of the qubit, such
as decoherence times and (3) which single-qubit gates are supported on the qubit, together with their duration and
noise. Each edge represents the possibility of performing joint operations on those qubits, such as two-qubit gates, and

also containing information about gate durations and noise.

B. NetQASM language

1. Instructions

As explained in section VA, the application layer delegates quantum code (including limited classical control)
of the program to the QNPU by creating blocks of instructions and sending these to the QNPU for execution. These
blocks are called subroutines and contain NetQASM instructions. Since the QNPU is meant to be limited in processing
power, the instruction set that it interprets should also be simple and low-level. The NetQASM instruction set contains
instructions for simple arithemetic, classical data manipulation, and simple control flow in the form of (un)conditional
branch instructions. Although conditional control-flow can be done at the application layer as well, NetQASM branching
instructions allow for much faster feedback since they are executed by the QNPU, and hence cover the design consideration
of real-time conditionals (section IV). There are no higher-level concepts such as functions or for-loops, which would
require more complicated and resource-demanding parsing for the QNPU, such as constructing an abstract syntax tree.
A single instruction specifies an operation, possibily acting on classical or quantum data. For example, a single-

qubit rotation gate is represented as an instruction containing the type of gate, the classical register containing the
rotation angle, and the classical register containing the virtual ID of the qubit (as specified in the unit module) to
act on. NetQASM specifies a set of core instructions that are expected to be implemented by any QNPU. These include
classical instructions like storing and loading classical data, branching, and simple arithmetic. Different hardware
platforms support different quantum operations. NetQASM should also support platform-specific optimization (section IV).
Therefore, NetQASM uses flavors of quantum instructions (section VB3). The vanilla flavor consists universal of a set of
platform-independent quantum gates. Particular hardware platforms, such as the NV-centre, may use a special NV
flavor, containing NV-specific instructions. A QNPU implementation may use a custom mapping from vanilla instructions
to platform-specific ones. The instructions in a flavor are also called a software-visible gate set [31]. See appendix F
for more details on NetQASM instructions.

2. Remote entanglement generation

Generating entanglement with a remote node is also specified by instructions. These are however somewhat special
compared to other instructions. First, entanglement generation has a non-deterministic duration. Therefore, when
an entanglement instruction is executed, the request is forwarded to the part of the system repsonsible for creating
entanglement, but the instruction itself immediately returns. A separate wait instruction can be used to block on
entanglement generation to actually be completed. Second, entanglement generation requests should be compatible
with the network stack proposed in [21], including the network layer from [22]. These requests need to be accompanied
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FIG. 7: Example of NetQASM code for generating a single entangled pair with anoter node followed by a
measurement. See the Appendix for more details of the instructions.

by information such as the number of EPR pairs to generate or the minimum required fidelity. Third, this information
should be able to depend on runtime information. For example, the required fidelity may depend on an earlier
measurement outcome. Therefore, entanglement generation parameters cannot be static data, and must be stored in
arrays. Furthermore, the result of entanglement generation with the remote node consists of a lot of information, such
as which Bell state was produced, the time it took, and the measurement results in case of measuring directly. This
information is written by the QNPU to an array which is specified by the entanglement instruction. Finally, since writing
the information to the array indicates that entanglement generation succeeded, the wait instruction can be used to
wait until a certain array is filled in, such as the one provided by the entanglement instruction. Since the entanglement
instruction is non-blocking, it is possible to continue doing local operations while waiting for entanglement generation
to complete.
We assume that the QNPU implements a network stack where connections need to be set-up between remote nodes

before entanglement generation can happen [21, 22]. NetQASM provides a way for programs to open such connections in
the form of EPR sockets. The application layer can ask the QNPU to open an EPR socket with a particular remote node.
The QNPU is expected to set up the required connections in the network stack, and associates this program socket with
the connection. When the program issues an instruction for generating entanglement, it refers to the EPR socket it
wants to use. Based on this, the QNPU can use the corresponding connection in the network.

3. Flavors

We want to keep NetQASM platform-independent. However, we also want the potential for platform-specific optimization
(section IV). Therefore we introduce the concept of flavors. Flavors only affect the quantum instruction set of the
language, and not the memory model or the interaction with the QNPU. We use the vanilla or generic flavor for a general,
universal gate set. Subroutines may be written or generated in this vanilla flavor. Platform-independent optimization
may be done on this level. A QNPU may directly support executing vanilla-flavored NetQASM. Platform-specific translations
may then be done by the QNPU itself. It can also be that a QNPU only supports a specific flavor of NetQASM. A reason for
this could be that the QNPU does not want to spend time translating of the instructions at runtime. In this case, the
application layer should perfrom a translation step from the vanilla flavor to the platform-specific flavor. In such
a case, the vanilla flavor can be seen as an intermediate represenation, and the translation to a specific flavor as a
back-end compilation step.

4. Programmability

Since the NetQASM instructions are relatively low-level, we like to have a higher-level programming language for writing
programs, that is automatically compiled to NetQASM. We introduce a higher-level SDK in section VII. However, we
do not see this as part of the NetQASM specification itself. This decoupling allows the development of SDKs to be
independent such that these can be provided in various languages and frameworks.
We still want NetQASM instructions to be suitable for manual writing and inspection. Therefore, instructions (and

subroutines) have two formats: a binary one that is used when sending to the QNPU, and a text format that is
human-readable. The text format resembles assembly languages including OpenQASM. Example are given in section VIIA
and the Appendix.
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FIG. 8: Flow of messages between the application layer and the QNPU.

VI. IMPLEMENTATION

A. Interface between application layer and QNPU

Here we explain the flow of messages between the application layer and the QNPU. The application layer starts
by declaring the registration of an application, including resource-requirements for the application. After this, the
application layer sends some number of subroutines for the QNPU to execute before declaring the application is finished.
See fig. 8 for a sequence diagram and below for a definition of the messages. In section VIB we will describe in more
details the content of the subroutines and the format of instructions. The QNPU returns to the application layer an
assigned application ID for the registered application and returns data based on the subroutines executed.

The application layer and the QNPU are assumed to run independently and in parallel. For example, while a subroutine
is being executed by the QNPU, the application layer could in principle do other operations, such as heavy processing or
communication with another node.

Figure 8 shows an example of a message exchange between the application layer and the QNPU. The content of these
messages is further detailed in appendix A.

B. The language

The syntax and structure of NetQASM resemble that of classical assembly languages, which in turn inspired the various
QASM-variants for quantum computing [37–40].

A NetQASM instruction is formed by an instruction name followed by some number of operands:

0 instr operands

where instr specifies the instruction, for example add to add numbers or h to perform a Hadamard. The operands
part consists of zero or more values that specify additional information about the instruction, such as which qubit to
act on in the case of a gate instruction. Instructions and operands are further specified in appendix B.
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Classical:
add, sub

addm, subm

Branch:
jmp, bez, bnz,

beq, bne, blt, bge

Memory:
set, store, load,

undef, lea

Allocate:
array, qalloc, qfree

Wait:
wait_all, wait_any,

wait_single

Return:
ret_reg, ret_arr

Measurement:
meas

Entanglement:
create_epr, recv_epr

Core

NetQASM flavors:

Vanilla flavor:
init,

x, y, z,
h, s, k, t,

rot_x, rot_y, rot_z,
cnot, cphase

NV flavor:
init,

rot_x, rot_y, rot_z,
cx_dir, cy_dir

TI flavor:
. . .

. . .

FIG. 9: The core of NetQASM consists of eight groups of instructions. The quantum gates are defined as a set of
software-visible gates part of a NetQASM flavor. The vanilla flavor is the unique platform-independent NetQASM flavor

of NetQASM, which can be used by a compiler.

C. Instructions

There are eight groups of instructions in the core of NetQASM. Also summarized in fig. 9, these are:

• Classical: Classical arithmetic on integers.

• Branch: Branching operations for performing conditional logic.

• Memory: Read and write operations to classical memory (register and arrays).

• Allocate: Allocation of qubits and arrays.

• Wait: Waiting for certain events. This can for example be the event that entanglement has been generated by
the network stack.

• Return: Returning classical values from the QNPU to the application layer. In our implementation we implement
this by having the QNPU write to the shared memory so that the application layer can access it.

• Measurement: Measuring a qubit.

• Entanglement: Creating entanglement with a remote node using the quantum network stack.

Quantum gates are specific to a NetQASM flavor and given as a set of software-visible gates of a given platform, see
section IV. There is a single platform-independent NetQASM flavor which we call the vanilla flavor, see fig. 9. The
vanilla flavor can be used as an intermediate representation for a compiler.

D. Compilation

Although application programmers could write NetQASM subroutines manually, and let their (classical) application
code send these subroutines to the QNPU, it is useful and more user-friendly to be able to write quantum internet
applications in a higher level language, and have the quantum parts compiled to NetQASM subroutines automatically.
For this, we use the compilation steps depicted in fig. 10. The format and compilation of the higher-level programming
language is not part of the NetQASM specification. However, we do provide an implementation in the form of an SDK,
see section VII.
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Higher-level programming language

Hybrid quantum-classical program

NetQASM (vanilla flavor)

NetQASM (HW flavor)

NetQASM (HW flavor)

Full application, written by
a programmer (e.g. Python)

Full application, multiple subrou-
tines compiled together, including
also classical logic at application level

Virtual qubits part of allocated unit-
module, abstract gates, single subroutine

Same as above except for software-
visible gates (platform-dependent)

Input from above

(multiple subroutines)

(heavy compiling)

Compilation

Application layer

QNPU

FIG. 10: Compilation steps from higher-level programming language, to the NetQASM flavor exposed by the specific
platform. What is contained at each level is further specified to the right of the diagram.

VII. PYTHON SDK

We implemented NetQASM by developing a Software Development Kit (SDK) in Python. This SDK allows a programmer
to write quantum network programs as Python code, including the quantum parts. These parts are automatically
translated to NetQASM subroutines. The SDK contains a simulator that simulates a quantum network containing
end-nodes, each with a QNPU. The SDK can execute programs by executing their classical parts directly and executing
the quantum parts as NetQASM subroutines on the simulated QNPU. By executing multiple programs at the same time, on
the same simulated network, a whole multi-partite application can be simulated. In section VIII we use this SDK to
evaluate some of the design decisions of NetQASM.

We refer to the docs at [24] for the latest version of the SDK. Below, we give an example of an application written in
the SDK to give an idea of how development in the SDK looks like. In appendix H 2 we provide a few more examples
of applications in the SDK and their corresponding NetQASM subroutines.
All code can be found at [24] and [66], including: (1) Tools for serializing (de-serializing) to (from) both human-

readable text form and binary encoding, (2) the NetQASM SDK, together with compilers (no optimization yet), (3) support
for running applications written in the SDK on the simulators NetSquid [26, 60] and SimulaQron [27], and (4) implemented
applications in NetQASM, including: anonymous transmission [67], BB84 [2], blind quantum computing [68, 69], CHSH
game [70], performing a distributed CNOT [71], magic square game [72], teleportation [73].

A. SDK

The SDK of NetQASM uses a similar framework to the SDK used by the predecessor CQC [74]. Any program on a node
starts by setting up a NetQASMConnection to the QNPU-implementation in the backend. The NetQASMConnection
encapsulates all communication that the application layer does with the QNPU. More information about supported
backends can be found below in section VIIA1. Using the NetQASMConnection one can for example construct a
Qubit object. The Qubit object has methods for performing quantum gates and measurements. When these methods
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are called, corresponding NetQASM instructions are included in the current subroutine being constructed. One marks
the end of a subroutine, and the start of another, either by explicitly calling flush on the NetQASMConnection or by
ending the scope of the with NetQASMConnection ... context.

The following Python code shows a basic application written in the NetQASM SDK. The application will be compiled
into a single subroutine executed on the QNPU, which creates a qubit, performs a Hadamard operation, measures the
qubit and returns the result to the application layer.

0 # Setup connection to backend
1 # as the node Alice
2 with NetQASMConnection("Alice") as alice:
3 # Create a qubit
4 q = Qubit(alice)
5 # Perform a Hadamard on the qubit
6 q.H()
7 # Measure the qubit
8 m = q.measure ()
9 # The end of the context also marks

10 # the end of the subroutine
11 # automatically but can also be done
12 # explicitly using ‘alice.flush ()‘

The following NetQASM subroutine is the result of translating the above Python code to NetQASM of the vanilla
(platform-independent) flavor.

0 # NETQASM 1.0
1 # APPID 0
2 // Set the virtual qubit ID to use
3 set Q0 0
4

5 // Allocate and initialize a qubit
6 qalloc Q0
7 init Q0
8

9 // Perform a Hadamard gate
10 h Q0
11

12 // Measure the qubit
13 meas Q0 M0
14

15 // Return the outcome
16 ret_reg M0

1. Backends

As mentioned above, the NetQASMConnection in the SDK is responsible for communicating with the implemented
QNPU in the backend. The backend can either be a simulator or an actual QNPU using real quantum hardware. Currently
supported backends are the simulators SquidASM [66] (using NetSquid [26, 60]) and SimulaQron [27]. A physical imple-
mentation of QNPU running on quantum hardware is being worked on at the time of writing. Using the SDK provided
at [24], one can for example simulate a set of program files for the nodes of a quantum network on NetSquid using a
density matrix formalism with the command:

0 netqasm simulate --simulator=netsquid --formalism=dm

For more details see the docs at [24].
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VIII. EVALUATION

We evaluate two of the design choices that we made for NetQASM: (1) exposing unit-modules to the application layer
and (2) adding the possibility to use platform-specific flavors of instructions. For both elements we study the difference
in including them in NetQASM versus not including them. We do this by simulating a teleportation application and
a blind quantum computation application. These examples also showcase the ability of NetQASM to express general
quantum internet applications.

We have implemented a simulator, called SquidASM [66], that simulates a network in which end-nodes have the internal
architecture as described in section II, that is, with an application layer and a QNPU. The simulator internally uses
NetSquid [60], which was made specifically for the simulation of quantum networks. SquidASM executes programs written
using the SDK (section VII), including sending NetQASM subroutines to the (simulated) QNPU.
We evaluate the performance of NetQASM by looking at the runtime quality of two applications, both consisting of

two programs (one per node). The first is a teleportation of a single qubit from a sender node to a receiver node.
We define the quality as the fidelity between the original qubit state at the sender and the final qubit state at the
receiver. The second application is a blind computation protocol which involves a client and a server. The server
effectively performs, blindly, a single-qubit computation on behalf of the client. The protocol is a so-called verifiable
blind quantum computation [69]. This means that some of the rounds of the protocols are trap rounds. We define the
quality that we evaluate as the error rate of these trap rounds, since this indicates the blindness of the server.
We run these applications on SquidASM, where we simulate realistic quantum hardware. Specifically, we simulate

nodes based on nitrogen-vacancies (NV) in diamond, that can do heralded entanglement generation between each
other. The simulated hardware uses noise models that are also used in [26]. For more details, see appendix I.

A. Unit modules

We ask ourselves the question whether it pays off to expose unit modules, that is, a qubit topology with gate- and
entanglement information. Specifically, we want to know if there are situations where knowing the unit module gives
the application layer an opportunity to optimize the application in a way that is not possible when not knowing the
unit module. If so, we are interested in how much advantage this gives (in terms of the runtime quality defined above).

In the next section we show that there are indeed situations where knowledge of the unit module is advantageous. It
can be that the order in which NetQASM instructions are issued in a subroutine is sub-optimal, since virtual qubit IDs
may be mapped in such a way that the QNPU has to move virtual qubits to different physical qubits in order to execute
the instructions. If the application layer layer does not know this mapping, it cannot know that the instructions are
ordered sub-optimally. With knowledge of the unit module, on the other hand, the application layer can optimize the
order and the overall application performance is improved.

We consider a teleportation application where a sender program teleports a single qubit to another receiver program.
It is assumed that the underlying platform is based on nitrogen-vacancy centers in diamond (NV) and use well-
established models for both the noise and operations supported on such platforms, see appendix I. The sender program
uses two qubits: one to create entanglement with the receiver (qubit E), and one to send (teleport) to the receiver
(qubit T). At some point, the sender measures both qubits, after which it sends the outcomes to the receiver so that it
can do the relevant corrections on its received qubit. We assume that the sender program is written in a higher-level
language like, like in our SDK (section VIIA), and in such a way that it first issues a measurement operation on qubit
T, and then on E. However, due to the differences in characteristics of the physical qubits, as will be explained below,
it is more efficient to first do the measurement on E, and then on T. Now we consider two scenarios, namely

• Unit-modules (UM). We assume that the sender program is written and executed on a software stack
implementating NetQASM, which means that the application’s view of its quantum working memory is in the form
of a unit module. This unit module contains information about the above-mentioned hardware restrictions, and
therefore a compiler can take advantage of it by re-ordering the measurement operations while generating the
NetQASM subroutines to be sent to the QNPU.

• No unit-modules (NUM). In this case the software stack also implements NetQASM, but without unit modules.
Specifically, the application sees its quantum memory as just a number of uniform qubits. Therefore, a compiler
for this application does not know about the hardware restrictions, and will construct NetQASM-subroutines sent
to the QNPU without doing any optimization and leaves the order of the operations to be performed as they are
specified in the high-level SDK.

Let’s first go through the steps of the teleportation application:
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sender :

1. Initialize qubit qt to be teleported in a Pauli state.
2. Create entanglement with receiver using qubit qs.
3. Perform CNOT gate with qt as control and qs as target.
4. Perform Hadamard gate on qt.
5. Measure qubit qt and store outcome as m1.
6. Measure qubit qs and store outcome as m2.
7. Send m1 and m2 to receiver.

receiver :

1. Receive entanglement with sender using qubit qr.
2. Receive measurement outcomes from sender.
3. Apply correction operations on qr based on measurement outcomes.

We will now consider the order of the steps of the sender. Firstly, we assume that the qubit to be teleported, qt, is
always created before the entanglement. We motivate this assumption below. For this reason, steps 1–3 and 7 are
fixed and cannot change. However, we are free to do step 6 before step 4 and 5, since these single-qubit operations and
measurements commute, as long as we are consistent with the outcomes m1 and m2. Let’s now consider what impact
this decision of measuring qs before qt or not has on the quality of execution for a NV-platform.

One of the biggest restrictions on a NV-platform is the topology of the qubits. In particular, the NV-platform has a
single communication-qubit (electron) surrounded by some number of storage qubits (carbon spins), see for example
fig. 6. The single communication qubit is not only responsible for any remote entanglement generation but also for any
two-qubit gate and is the only qubit that can be directly measured. These restrictions require qubit states to be moved
back and forth between the communication qubit and the storage qubits in order to free up the communication qubit,
to create new entanglement or to measure another qubit. Since the operation of moving a qubit state is relatively slow
on this platform (up to a millisecond [7]) and adds noise to the qubits, it is important to try to minimize the number
of moves needed. For more details on the NV-platform, see for example [61] or [21].
In the steps of the sender above, the communication qubit is first initialized to a Pauli state. This state is then

moved to a storage qubit to free up the communication qubit in order to create entanglement with the receiver. Then
in step 5, qt should be measured, which is currently in the storage qubit. This requires the qubit state to first be moved
to the communication qubit. However, at this point the communication qubit is occupied by the entangled pair and
therefore first needs to be moved to a second storage qubit. Qubit qt can then be moved to the communication qubit
to be measured and then the same is done for qs, requiring in total four move operations and three physical qubits.
We can now see that performing step 6 before 4 and 5 has the advantage that this qubit is already in the

communication qubit and can be measured directly without moving it first. Afterwards, qt can be moved to the
communication qubit, which is cleared after the measurement, requiring in total only 2 move operations and only two
physical qubits. The decision of performing step 6 before 4 and 5 is highly dependent on the NV-platform and can
only be made by a compiler that is aware about these restrictions. The inclusion of unit-modules and qubit types
in the NetQASM-framework, which are exposed to the compiler at the application layer, allows for these optimization
decision and can therefore improve the quality of execution.
For the two scenarios we consider, i.e. performing step 6 before 4 and 5 (Unit modules (UM)) or not (No

unit-modules (NUM)), we check the average fidelity of the teleported state as a function of the gate noise (fig. 11a),
as well as the average fidelity and execution time as a function of gate duration (fig. 11a), of the native two-qubit
gate of the NV-platform. We see that performing step 6 before 4 and 5 improves both total execution time and
average fidelity. This can be explained by the fact that using unit modules allowed a compiler to produce NetQASM
code containing fewer two-qubit gates. Therefore, an increase in two-qubit gate noice leads to a lower fidelity. Also,
an increase in two-qubit gate duration leads to higher execution time difference between the two scenarios. Finally,
fig. 11a shows that the two-qubit gate duration does not affect the final fidelity in this situation, but the difference
between using unit modules versus not using them remains.

B. Flavors

While aiming to let NetQASM be mostly platform-independent, we did also choose to allow platform-specific instructions,
bundled in flavors. The idea is that this allows for platform-specific optimization leading to better application
performance. Here we evaluate if flavors really impact potential performance, and if so how much.
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(a)

(b)

FIG. 11: (a) Average fidelity between the original state at the sender and the final state at the server, as a function of
the depolarizing noise of the native two-qubit gate of the NV-platform, both for the case of performing step 6 after
(No unit modules) and before (Unit modules) step 4 and 5. Execution time of the native two-qubit gate is set to
0.5 ms. The rest of the parameters used are listed in appendix I. Each point is the average over each of the six Pauli
states as initial state, repeated 100 times. (b) Average fidelity of the teleported state (left y-axis, solid lines) and total
execution time of the teleportation application (right y-axis, dashed lines) as a function of the execution time of the
native two-qubit gate of the NV-platform, both for the case of performing step 6 after (No unit modules) and

before (Unit modules) step 4 and 5. Dephasing parameter of the native two-qubit gate is set to 0.02. The rest of the
parameters used are listed in appendix I. Each point is the average over each of the six Pauli state as initial state,

repeated 100 times. In both figures, error bars are smaller than the drawn dots.
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FIG. 12: Circuit representation of the simulated BQC application. The client remotely prepares two qubits on the
server, by twice creating an entangled pair with the server followed by a local measurement. The server locally

entangles its two qubits (cphase gate). Then, the client and server use classical communication to further guide the
server’s quantum operations. The client computes δ1 = α− θ1 + p1 · π and sends this to the server. The server uses
the received value to do a local rotation and later sends measurement outcome m1 back to the client. The client then

sends δ2 = (−1)m1 · (β − θ2 + p2 · π) to the server. The qubit state q is the result of this application.

We show that platform-specific optimization can indeed improve application performance, and that there are such
optimizations that are not possible without flavors. We see that it has impact mostly on the execution time, but not
necessarily on outcome quality.

We consider the blind computation application depicted in fig. 12, where both the client and server node implement
the NV hardware. Again we compare two scenearios, in this case:

• Vanilla. We compile both the client’s and server’s application code to NetQASM subroutines with the vanilla flavor.
The QNPU, controlling NV hardware which does not implement all vanilla gates natively, needs to translate the
vanilla instructions on the go. We assume this translation is ad-hoc and does not do any optimizations like
removing redundant gates.

• NV. The code is compiled to NetQASM subroutines containing instructions in the NV flavor, and redundant gates
are optimized away. The QNPU can directly execute the instructions on the hardware.

We implemented this by writing two separate programs in the SDK, one for the client and one for the server. The
SDK automatically compiles the relevant parts of these programs into NetQASM subroutines. Classical communication
(values δ1, m1 and δ2) is done purely between the two simulated application layers, so these operations are not compiled
to NetQASM subroutines. More details about the simulation can be found in appendix I.

The protocol is a verifiable blind quantum protocol [69], which means that the circuit in fig. 12 is run multiple times,
namely once per round. Some of these rounds are trap rounds in which the client chooses a special set of input values.
Such a trap round can either succeed or fail, depending on the values returned by the server. The fraction of trap
rounds that fail is called the error rate. The error rate should stay low in order for the computation to be blind.
We simulate the BQC application by running the client’s and server’s programs in SquidASM. We look at the error

rate of the trap round as a function of the two-qubit gate noise. The result can be seen in fig. 13. It can be seen that
using the NV flavor provides a better (lower) error rate than using the vanilla flavor. This can be explained by noting
that NetQASM instructions in the vanilla flavor are mapped ad-hoc to native NV gates by the QNPU at runtime, which
leads to more two-qubit gates in total.

C. Relation to other results

We note that a similar question of how many physical details to expose from lower-level layers (in our case the
QNPU) to higher-level layers (in our case the application layer) has also been evaluated in [31]. Their conclusion is that
exposing and leveraging some of these details can indeed improve certain program success metrics. That result agrees
with that of ours, which shows that program execution quality can improve by exposing and leveraging unit modules
and platform-specific NetQASM flavors.
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FIG. 13: Average error rate of trap rounds for the circuit of fig. 12. Each point is the average over four combinations
of θ1 and θ2, each used in 500 trap rounds. It can be seen that using the vanilla (platform-independent) NetQASM flavor

results in a worse (higher) error rate on average.

IX. CONCLUSION

NetQASM enables the development of quantum internet applications in a platform-independent manner. It solves the
question of dealing with the complexity of having both classical and quantum operations in a single program, while
at the same time providing a relatively simple format for QNPU-like layers to handle. Multiple applications, such as
remote teleportation and blind quantum computation, have already been implemented. A simple compiler has been
implemented that can translate code written in the higher-level SDK into NetQASM.
Additionally to the work in this paper, we are also developing a physical implementation of the QNPU. One key

component in this implementation is the Quantum Node Operating System (QNodeOS), which acts as the bridge between
the applications and the physical layer. QNodeOS will be presented in a dedicated paper including results of a first
integration test between NetQASM, QNodeOS and underlying physical quantum hardware. This will mark the first time a
quantum network node has been programmed using platform-independent code.
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Appendix A: Flow of messages

Here we define the content of each of the messages being sent between the application layer and the QNPU. Each
message has an ID chosen by the application layer which is used to associate replies from the QNPU to the application
layer.

• RegisterApp: Sent once from the application layer to the QNPU whenever a new application starts. Contains
information on what resources are required by the application, in particular:

– unit_module_spec: Specification of unit-module needed, e.g. number of qubits.
– epr_socket_spec: Specification of EPR sockets needed, see [22], containing (1) EPR socket ID, (2) remote
node ID, (3) remote EPR socket ID and (4) minimum required fidelity.

• RegisterAppOK: Returned from the QNPU when application is registered, containing an application ID to be used for
future messages.

– app_id: Application ID.

• RegisterAppErr: Returned from the QNPU when registration of application failed. For example if required resources
could not be met.

– error_code: Error code specifying what went wrong.

• Subroutine: Message from the application layer to the QNPU, containing a subroutine to be executed. Details on
the content are presented in later sections.

– app_id: Application ID.
– subroutine: The subroutine to be executed.

• Done: Message from the QNPU to the application layer, indicating that a subroutine has finished. Which subroutine
is indicated by the message ID.

– message_id Message ID used for the Subroutine-message.

• Update memory: The application layer will have access to a copy of the memory allocated by the QNPU for
certain registers and arrays, see section VIB. This memory is read-only by the application layer. Updates to
the copy of the memory are performed by the end of a subroutine or if the subroutine is waiting. Furthermore,

https://github.com/QuTech-Delft/squidasm
https://github.com/SoftwareQuTech/CQC-Python
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updates need to be explicitly specified in the subroutine by using one of the return-commands. How the actual
update is implemented depends on the platform and can either be done by message-passing or with an actual
shared memory. However, the subroutine is independent from this implementation. The application layer will be
notified by an explicit message whenever the memory is updated.

• StopApp: Sent from the application layer to the QNPU indicating that an application is finished.

Appendix B: Operands

In this section we give the exact definition of the types of operands used in the NetQASM language. Each instruction of
NetQASM takes one or more operands. There are five types of operands, which are listed and described below. Each
instruction has a fixed types of operands at each position. The exact operands for each instruction is listed in
appendix F. We note also that in the human-readable text-form of NetQASM, there are also branch variables. However,
these are always replaced by IMMEDIATEs (constants), corresponding to the instruction number of the subroutine,
before serializing, see appendix C.

The operand types of NetQASM are:

• IMMEDIATE (constant): An integer seen as it’s value. The following instruction, beq branch-if-equal, branches
to instruction index 12 since the number 0 equals the number 0.

0 beq 0 0 12

In the binary encoding used at [24], IMMEDIATEs are int32.

• REGISTER: A register specifying a register name and a index. The following instruction sets index 0 of the
register name R to be 0.

0 set R0 0

In the current version of NetQASM there are four register names and the indices are relative to the names. They
are all functionally the same but are meant to be used for different purposes and increase readability:

– C: Constants, meant to only be set once throughout a subroutine.
– R: Normal register, used for looping etc.
– Q: Stores virtual qubit IDs.
– M: Stores measurement outcomes.

In the binary encoding used at [24], REGISTERs are specified by one byte and hold one int32.

• ADDRESS: Specifies an address to an array. Starts with @. The following instruction declares an array of
length 10 at address 0.

0 array 10 @0

For more information about arrays, see below. The address here is just an identifier of the array and does not
refer to a actual memory address. For this reason @1 above does not mean the second entry of the declared array
but simply a different array. Addresses are relative to the application ID and are valid across subroutines.

• ARRAY_ENTRY: Specifies an entry in an array. Takes the form @a[i], where a specifies the address and i
the index. The following instruction stores the value of R0 to the second entry of the array with address 0.
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0 store R0 @0[1]

In the text-form i can either be an IMMEDIATE or a REGISTER, however in the binary encoding used
at [24], i is always a REGISTER. This is handled by the compiler by using a set-command before.

• ARRAY_SLICE: Specifies a slice of an array. Takes the form @a[s:e], where a specifies the address, s the
start-index (inclusive) and e the end-index (exclusive). The following instruction waits for the second to the
fourth entry of array with address 0 to become not null, see appendix F 7.

0 wait_all @0[1:4]

In the text-form s and e can either be an IMMEDIATEs or a REGISTERs, however in the binary encoding
defined used at [24], s and e are always aREGISTERs. This is handled by the compiler by using a set-commands
before.

Appendix C: Branch variables

The human-readable text-form of NetQASM supports the use of branch variables. Branch labels are declared as VAR:
before the instruction to branch to. Before serializing a NetQASM-subroutine, all branch variables are replaced with
IMMEDIATEs corresponding to the correct instruction index. Delaying this replacement to the end is useful if the
compiler wants to move around instructions. For example if a subroutine is as follows:

0 # NETQASM 1.0
1 # APPID 0
2 set R0 0
3

4 // Loop entry
5 LOOP:
6 beq R0 10 LOOP_EXIT
7

8 // Loop body
9 // If statement

10 bge R0 5 ELSE
11 // true block
12 add R0 R0 1
13 jmp IF_EXIT
14 // false block
15 ELSE:
16 add R0 R0 2
17 IF_EXIT:
18

19 // Loop exit
20 jmp LOOP
21 LOOP_EXIT:

Which effectively does the same as the following program written in Python (where the variable i corresponds to
the register R0 above).

0 i = 0
1 while i != 10:
2 if i < 5:
3 i += 1
4 else:
5 i += 2
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After replacing the branch labels the body of the subroutine will instead look:

0 store R0 0
1 beq R0 10 7
2 bge R0 5 5
3 add R0 R0 1
4 jmp 6
5 add R0 R0 2
6 jmp 1

Appendix D: Arrays

Classical data produced during the execution of a subroutine are stored in either fixed registers or allocated arrays.
Arrays in NetQASM have fixed-length, which is specified when declared using the array-instruction. Each entry of an
array is an optional IMMEDIATE, meaning that the entry is an integer (e.g. int32) or not defined (null). The
arrays can be used to collect measurement outcomes to be returned to the application layer but also other data such
as information about the generated remote entanglement [21, 22]. All wait-instructions of NetQASM wait for one or more
entries in an array to become defined (i.e. not null). The main use-case is for the execution of the subroutine to
wait until the quantum network stack of the QNPU has finished generated an entangled pair with a remote node. The
subroutine will be waiting for information about the entangled pair to be stored in a given array. Once this is done,
the execution can proceed.
The following subroutine for example creates and array with three elements, stores the values 1 and 2 to the array

and reads them and adds them up, storing the value in the third entry.

0 // Create two constant registers
1 set C1 1
2 set C2 2
3 // Make an array of three entries
4 array 3 @0
5 // Load the constants to the array
6 store C1 @0[0]
7 store C2 @0[1]
8 // Load the array entries to two other registers
9 load R0 @0[0]

10 load R1 @0[1]
11 // Add the registers and store the result in the first
12 add R0 R1 R0
13 // Store the sum in the third entry of the array
14 store R0 @0[2]

Appendix E: Qubit address operands

Commands that perform actions on qubits have REGISTER-operands which specify the virtual address of the
qubit to act on. It is good practice to use register name Q for these registers. The following subroutine performs a
Hadamard gates on qubits with virtual addresses 0, 1 and 2.

0 set Q0 0
1 set Q1 1
2 h Q0
3 h Q1
4 set Q0 2
5 h Q0

Note that Q0 is used twice but the value of the register is different.
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Appendix F: Instructions

Here we list the current instructions part of the vanilla flavor of NetQASM. For the most up to date version of the
language, refer to [24]. Commands are specified as follows:

• name: Description of instruction.

1. IMMEDIATE: Description of op1
2. REGISTER: Description of op2

where name is the name of the instruction, followed by the list of operands, specified by their type and description.
We note that in the human-readable text-form of NetQASM, it is allowed to provide an IMMEDIATE for operands
that are specified as REGISTER. The compiler will then replace these, using the set-command.

1. Allocation

• qalloc: Start using a qubit in the unit module.

1. REGISTER: The virtual address of the qubit.

• array: Creates an array of a certain length (width is fixed)

1. IMMEDIATE: Number of entries in the array.
2. ADDRESS: Address of array

2. Initialization

• init: Initializes a qubit to |0〉

1. REGISTER: The virtual address of the qubit.

• set: Set a register to a certain value.

1. REGISTER: The register to assign a value to.
2. IMMEDIATE: The value to assign.

3. Memory operations

• store: Stores the value in a register to an index of an array.

1. REGISTER: The register holding the value to store.
2. ARRAY_ENTRY: The array-entry to store the value to.

• load: Loads the value from an index of an array to a register.

1. REGISTER: The register to store the value to.
2. ARRAY_ENTRY: The array-entry holding the value.

• undef: Sets an entry of an array to null, see appendix F 7.

1. ARRAY_ENTRY Array-entry to make null.

• lea: Loads a given address of an array to a register.

1. REGISTER: The register to store the address to.
2. ADDRESS: The address to the array.
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4. Classical logic

There are three groups of branch instructions: nullary, unary and binary.
Nullary branching

• jmp: Jump to a given line (unconditionally).

1. IMMEDIATE: Line to branch to.

Unary branching There are two unary branching instructions: beq and bnz, which both have the following structure:

• b{ez,nz}: Branch to a given line if condition fulfilled, see below.

1. REGISTER: Value v in condition expression.
2. IMMEDIATE: Line to branch to.

Branching occurs if:

• bez: v = 0 (branch-if-zero)

• bnz: v 6= 0 (branch-if-not-zero)

Binary branching There are four binary branch instructions: beq, bne, blt and bge, which all have the following
structure:

• b{eq,ne,lt,ge}: Branch if condition fulfilled, see below.

1. REGISTER: Value 1 v1 in conditional expression.
2. REGISTER: Value 1 v1 in conditional expression.
3. IMMEDIATE: Line to branch to.

Branching occurs if:

• beq: v0 = v1 (branch-if-equal)

• bne: v0 6= v1 (branch-if-not-equal)

• blt: v0 < v1 (branch-if-less-than)

• bge: v0 ≥ v1 (branch-if-greater-or-equal)

5. Classical operations

There are currently four binary classical operations: addition (add), subtraction (sub) and addition (addm), subtraction
(subm) modulo a number. The first two have the following structure:

• {add,sub}: Perform a binary operation and store the result.

1. REGISTER Register to write result (r) to.
2. REGISTER First operand in binary operation (v0).
3. REGISTER Second operand in binary operation (v1).

The second two have an additional operand to specify what module should be taken for the result:

• {add,sub}m: Perform a binary operation modulo mod and store the result.

1. REGISTER Register to write result (r) to.
2. REGISTER First operand in binary operation (v0).
3. REGISTER Second operand in binary operation (v1).
4. REGISTER Modulo in binary operation (m).

Binary operations are the following:
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• add, r = (v0 + v1)

• sub, r = (v0 − v1)

• addm, r = (v0 + v1) (mod m)

• subm, r = (v0 − v1) (mod m)

6. Quantum gates

Single-qubit gates There is a number of single-qubit gates which all have the following structure

• instr: Perform a single-qubit gate.

1. REGISTER: The virtual address of the qubit.

Single-qubit gates without additional arguments are the following.

• x: X-gate.

X =

(
0 1
1 0

)
(F1)

• y: Y-gate.

Y =

(
0 −i
i 0

)
(F2)

• z: Z-gate.

Z =

(
1 0
0 −1

)
(F3)

• h: Hadamard gate.

H =
1√
2

(
1 1
1 −1

)
(F4)

• s: S-gate (phase)

S =

(
1 0
0 i

)
(F5)

• k: K-gate.

K =
1√
2

(
1 −i
i −1

)
(F6)

• t: T-gate.

T =

(
1 0
0 eiπ/4

)
(F7)

Single-qubit rotations Additionally one can perform single-qubit rotations with a given angle. The angles a are
specified by two integers n and d as:

a =
nπ

2d
(F8)

These instructions have the following structure
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• rot_{x,y,z}: Perform a single-qubit rotation.

1. REGISTER: The virtual address of the qubit.
2. IMMEDIATE: n, for angle, see above.
3. IMMEDIATE: d, for angle, see above.

Single-qubit rotations are the following.

• rot_x: Rotation around X-axis.

• rot_y: Rotation around Y-axis.

• rot_z: Rotation around Z-axis.

Two-qubit gates There are two two-qubit gates which have the following structure

• {cnot,cphase}: Perform a two-qubit operation.

1. REGISTER: The virtual address of the control qubit.
2. REGISTER: The virtual address of the target qubit.

Two-qubit gates are the following.

• cnot: Controlled X gate.

• cphase: Controlled Z gate.

Measurement

• meas: Measure a qubit in the standard basis.

1. REGISTER: The virtual address of the qubit.
2. REGISTER: The register to write outcome address to.

Pre-measurement rotations To measure in other bases one can perform gates/rotations before the measurement.
If the same measurement basis is used a lot, one can also make use of pre-measurement rotations which can reduce the
amount of communication needed internally in the QNPU. A pre-measurement rotations is specified by either the pmr_xyx,
pmr_zxz or pmr_yzy which have the following structure. With any two of the bases X, Y and Z, one can do any rotation.

• pmr_{xyx,zxz,yzy}: Specify a pre-measurement rotation.

1. IMMEDIATE: n0, for angle of first rotation, see below.
2. IMMEDIATE: d0, for angle of first rotation, see below.
3. IMMEDIATE: n1, for angle of second rotation, see below.
4. IMMEDIATE: d1, for angle of second rotation, see below.
5. IMMEDIATE: n2, for angle of third rotation, see below.
6. IMMEDIATE: d2, for angle of third rotation, see below.

If a pre-measurement rotation is specified, then three rotations are performed before measuring using a meas_rot-
command, see below. The axes of these rotations as given in the instruction name.
The angles of the rotations are specified by the integers n{0,1,2} and d{0,1,2} in the same way as for single-qubit

rotations. That is, rotation i is done by angle πni

2di
.

Entanglement generation
There are two commands related to entanglement generation. A node can initiate entanglement generation with

another node by using the create_epr-command. This command is not blocking until entanglement has been generated
but a wait-instruction (see below) can be used to block until certain a certain array has been written to, indicating
that entanglement has been generated. The remote node should also provide a recv_epr-command. This command
does not initiate the entanglement generation but is used to provide the virtual qubit IDs that should be used for the
entangled qubits.

• create_epr: Create an EPR pair with a remote node.
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1. REGISTER: Remote node ID.
2. REGISTER: EPR socket ID.
3. REGISTER: Provides the address to the array containing the virtual qubit IDs for the entangled pairs in this

request. The value of the register should contain the address to an array with as many virtual qubit IDs stored
as pair requested.

4. REGISTER: Provides the address to the array which holds the rest of the arguments of the entanglement
generation to the network stack [21, 22]. The value of the register should contain the address to an array with
as entries as arguments in the entanglement generation request to the network stack [21, 22] (except remote
node ID and EPR socket ID).

5. REGISTER: Provides the address to the array to which information about the entanglement should be written.
The value of the register should contain the address to an array with as many entries as npairs × nargs, where
numargs is the number of arguments in the entanglement information provided by the network stack [21, 22].

• recv_epr: Receive an EPR pair from a remote node.

1. REGISTER: Remote node ID.
2. REGISTER: EPR socket ID.
3. REGISTER: Provides the address to the array containing the virtual qubit IDs for the entangled pairs in this

request. The value of the register should contain the address to an array with as many virtual qubit IDs stored
as pair requested.

4. REGISTER: Provides the address to the array to which information about the entanglement should be
written. The value of the register should contain the address to an array with as many entries as npairs × nargs,
where nargs is the number of arguments in the entanglement information provided by the network stack [21, 22].

7. Waiting

There are three wait-commands that can wait for entries in arrays to become defined, i.e. not null. Entries in a new
array is by default null (undefined).

• wait_all: Wait for all entries in a given array slice to become not null.

1. ARRAY_SLICE: Array slice to wait for.

• wait_any: Wait for any entry in a given array slice to become not null.

1. ARRAY_SLICE: Array slice to wait for.

• wait_single: Wait for a single entry in an array to become not null.

1. ARRAY_ENTRY: Array entry to wait for.

8. Deallocation

• qfree: Stop using a qubit in the unit module.

1. REGISTER: The virtual address of the qubit.

9. Return

There are two commands for returning data to the application layer. These commands indicate that the copy of the
memory on the application layer side should be updated, see above.

• ret_reg: Return a register.

1. REGISTER: The register to return.

• ret_arr: Return an array,

1. ADDRESS: The address of the array to return.
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Appendix G: Preprocessing

A subroutine written in text form will first be preprocessed, which does the following:

• Parses preprocessing commands and handles these. Any preprocessing command starts with # and should be before
any command in the body of the subroutine. Allowed preprocessing commands are:

– NetQASM (required): Sets the NetQASM version in the metadata.

0 # NETQASM 1.0

– APPID (required): Sets the application ID in the metadata.

0 # APPID 0

– DEFINE (optional): Defines a macro with a key and a value. Any occurrence of the key prepended by $ will be
replaced with the value in the subroutine. Values containing spaces should be enclosed with {}.

0 # DEFINE q 0
1 # DEFINE add {add @0 @0 @1}

First command replaces any occurrence of $q with 0 and second $add with add @0 @0 @1.

Appendix H: Examples

Here we list some examples of programs written in NetQASM. In appendix H 1, we show some examples written directly
in the NetQASM-language. In appendix H2, we show the corresponding examples, instead written in the Python SDK.

1. NetQASM

a. Classical logic (if-statement)

A subroutine which creates a qubit, puts in the |+〉 state, measures it and depending on the outcome performs an
X-gates such that by the end of the subroutine the qubit is always in the state |0〉.
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0 # NETQASM 1.0
1 # APPID 0
2 // Set the virtual qubit ID to use
3 set Q0 0
4

5 // Allocate and initialize a qubit
6 qalloc Q0
7 init Q0
8

9 // Perform a Hadamard gate
10 h Q0
11

12 // Measure the qubit
13 meas Q0 M0
14

15 // Branch to end if m = 0
16 bez M0 EXIT
17

18 // Perform X gate
19 x Q0
20

21 EXIT:

b. Classical logic (for-loop)

A subroutine which performs a for-loop which body creates a qubit, puts in the |+〉 state and measures it. The
outcomes are stored in an array. In a higher-level language (using python syntax) the below subroutine might be
written as follows:

0 ms = [None] * 10
1

2 for i in range (10):
3 q = Qubit()
4 q.H()
5 m = q.measure ()
6 ms[i] = m

The equivalent NetQASM subroutine is:
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0 # NETQASM 1.0
1 # APPID 0
2 # DEFINE ms @0
3 # DEFINE i R0
4 # DEFINE q Q0
5 # DEFINE m M0
6 // Create an array with 10 entries (all null)
7 array 10 $ms
8

9 // Initialize loop counter
10 store $i 0
11

12 // Set the virtual qubit ID to use
13 set $q 0
14

15 // Loop entry
16 LOOP:
17 beq $i 10 EXIT
18

19 // Loop body
20 qalloc $q
21 init $q
22 h $q
23 meas $q $m
24 store $m $ms[$i]
25 qfree $q
26 add $i $i 1
27

28 // Loop exit
29 jmp LOOP
30 EXIT:

In the above subroutine DEFINE statements have been used to clarify what registers/arrays correspond to the variables
in the higher-level language example above.

c. Create and recv EPR

This code is for the side initializing the entanglement request.
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0 # NETQASM 1.0
1 # APPID 0
2 # DEFINE qubits @0
3 # DEFINE args $1
4 # DEFINE entinfo @2
5 // Initilizer side
6

7 // Setup array with virtual qubit IDs to be used
8 // for the EPR pairs
9 array 1 $qubits

10 store 0 $qubits [0]
11

12 // Setup array to store other arguments to entanglement
13 // generation request
14 array 20 $args
15

16 // Setup array to store entanglement information
17 array 10 $entinfo
18

19 // Create entanglement
20 // Remote node ID 0 and EPR socket ID 0
21 // NOTE that these IMMEDIATEs will be replaced by
22 // REGISTERs when pre -processing.
23 create_epr 1 0 $qubits $args $entinfo
24

25 // Wait for the entanglement to succeed
26 // i.e. that all entries in the entinfo array becomes
27 // valid.
28 wait_all $entinfo [0:10]
29

30 // Measure the entanglement qubit
31 load Q0 $qubits [0]
32 meas Q0 M0
33

34 // Return the outcome
35 ret_req M0

This code is for the receiving side.
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0 # NETQASM 1.0
1 # APPID 0
2 # DEFINE qubits @0
3 # DEFINE entinfo @1
4 // Receiver side (very similar to the initializer side)
5

6 // Setup array with virtual qubit IDs to be used
7 // for the EPR pairs
8 array 1 $qubits
9 store 0 $qubits [0]

10

11 # Setup array to store entanglement information
12 array 10 $entinfo
13

14 // Receive entanglement
15 // Remote node ID 1 and EPR socket ID 0
16 // NOTE that these IMMEDIATEs will be replaced by
17 // REGISTERs when pre -processing.
18 recv_epr 1 0 $qubits $entinfo
19

20 // Wait for the entanglement to succeed
21 wait_all $entinfo [0:10]
22

23 // Measure the entanglement qubit
24 load Q0 $qubits [0]
25 meas Q0 M0
26

27 // Return the outcome
28 ret_req M0

2. SDK

Each of the examples in this section are functionally the same as the examples in section H 1. A compiler will produce
a similar subroutine as the examples in the previous section but might vary depending on the exact implementation of
the compiler.

a. Classical logic (if-statement)

Functionally the same as the NetQASM-subroutine (appendix H 1 a).

0 # Setup connection to backend
1 # as the node Alice
2 with NetQASMConnection("Alice") as alice:
3 # Create a qubit
4 q = Qubit(alice)
5 # Perform a Hadamard on the qubit
6 q.H()
7 # Measure the qubit
8 m = q.measure ()
9 # Conditionally apply a X-gate

10 with m.if_eq (1):
11 q.X()

b. Classical logic (for-loop)

Functionally the same as the NetQASM-subroutine (appendix H 1 b).
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0 # Setup connection to backend
1 # as the node Alice
2 with NetQASMConnection("Alice") as alice:
3 # Create an array for the outcomes
4 outcomes = alice.new_array (10)
5 # For -loop
6 with alice.loop (10) as i:
7 # Create a qubit
8 q = Qubit(alice)
9 # Perform a Hadamard on the qubit

10 q.H()
11 # Measure the qubit
12 m = q.measure ()
13 # Add the outcome to the array
14 outcomes[i] = m

c. Create and recv EPR

Functionally the same as the NetQASM-subroutine (appendix H 1 c).
This code is for the side initializing the entanglement request.

0 # Setup an EPR socket with the node Bob
1 epr_socket = EPRSocket("Bob")
2 # Setup connection to backend
3 # as the node Alice
4 with NetSquidConnection(
5 "Alice",
6 epr_sockets =[ epr_socket],
7 ):
8 # Create entanglement
9 epr = epr_socket.create ()[0]

10 # Measure the entangled qubit
11 m = epr.measure ()

This code is for the receiving side.

0 # Setup an EPR socket with the node Alice
1 epr_socket = EPRSocket("Bob")
2 # Setup connection to backend
3 # as the node Bob
4 with NetSquidConnection(
5 "Alice",
6 epr_sockets =[ epr_socket]
7 ):
8 # Create entanglement
9 epr = epr_socket.recv()[0]

10 # Measure the entangled qubit
11 m = epr.measure ()

Appendix I: Simulation details

In this section we detail how simulations in section VIII were performed and what models and parameters were used.
All simulations used the NetQASM SDK [24], using NetSquid [26, 60] as the underlying simulator. All code used in these
simulations can also be found at [66].
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Gate Durations (ns) Explanation

electron_init 2e3 Initialize a communication qubit (electron) to |0〉
electron_rot 5 single-qubit rotation on communication qubit (electron)

measure 3.7e3 Measure communication qubit (electron)
carbon_init 3.1e5 Initialize a storage qubit (carbon) to |0〉

carbon_xy_rot t X/Y -rotation on storage qubit (carbon)
carbon_z_rot 5 Z-rotation on storage qubit (carbon)

ec_controlled_dir_xy t Native two-qubit gates, see eqs. (I1) and (I2)

TABLE I: Gate durations for scenario B of section VIII. t is the value being swept in fig. 11b. All values are from [21].

1. Noise model

In both the teleportation and the blind quantum computing scenario we used the same model for nitrogen-vacancy
centres in diamonds as was used in [21] and [26]. All gates specified by the application in the SDK were translated to
NV-specific gates, see table I, using a simple compiler without any optimization. The parameters used in the model
from [21] are listed in tables I and II, together with an explanation and a reference. ec_controlled_dir_xy are the native
two-qubit gates of the NV-platform, ideally performing one of the unitary operations

Uecx(α) =

(
Rx(α) 0

0 Rx(−α)

)
(I1)

Uecy(α) =

(
Ry(α) 0

0 Ry(−α)

)
(I2)

(I3)

where Rx(α) and Ry(α) are the rotation matrices around X and Y , respectively. When sweeping the duration and
noise of this two-qubit gate the same value is also used for the carbon_xy_rot (X- and Y -rotations on the carbon) on
the storage qubits, since these are also effectively done with a similar operation also involving the communication
qubit (electron). All noise indicated by a fidelity in table II are applied as depolarising noise by applying the perfect
operation, producing the state ρideal, and mapping this to

ρnoisy = (1− p)ρideal +
p

3
XρidealX +

p

3
Y ρidealY +

p

3
ZρidealZ (I4)

where X, Y and Z are the Pauli operators in eqs. (F1) to (F3), p = 4
3 (1 − F ), with F being the value specific in

table II. Decoherence noise is specific as T1 (energy/thermal relaxation time) and T2 (dephasing time) [75].

2. BQC application and flavors

In section VIII B we simulated the blind quantum computation (BQC) application from fig. 12. The code for this is
available at [66].

In the scenario when the application code was compiled to subroutines with the vanilla lavour, the QNPU had to map
the vanilla instructions to NV-native operations on the fly. We used the gate mappings listed below. For convenience
we use PI and PI_OVER_2 for π and π

2 respectively.
A h (Hadamard) vanilla instruction was mapped to the following NV instruction sequence:

0 rot_y PI_OVER_2
1 rot_x PI

A cnot C S vanilla instruction between a communication qubit (C) and a storage qubit (S) (as specified in the unit
module) was mapped to the following NV instruction sequence:
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Parameter Value Explanation

electron_T1 1 hour T1 of communication qubit (electron)
electron_T2 1.46 seconds T2 of communication qubit (electron)

electron_init 0.99) Fidelity to initialize communication qubit (electron)
electron_rot 1.0 Fidelity for Z-rotation on communication qubit (electron)
carbon_T1 10 hours T1 of storage qubit (carbon)
carbon_T2 1 second T2 of storage qubit (carbon)

carbon_init 0.997 Fidelity to initialize storage qubit (carbon)
carbon_z_rot 0.999 Fidelity for Z-rotation on storage qubit (carbon)
carbon_xy_rot f Fidelity for X/Y -rotation on storage qubit (carbon)

ec_controlled_dir_xy f Fidelity for native two-qubit gate
prob_error_meas_0 0.05 Probability of flipped measurement outcome for |0〉
prob_error_meas_1 0.005 Probability of flipped measurement outcome for |1〉

link_fidelity 0.9 Fidelity of generated entangled pair.

TABLE II: Noise parameters for used in the simulations of section VIII. f is the value being swept in fig. 11a and
fig. 13. All fidelities are realized by a applying depolarising noise as in eq. (I4). All values are from [26], except

link_fidelity which is set to relatively high value to avoid this being the major noise-contribution and preventing any
conclusions to be made.

0 cx_dir C S PI_OVER_2
1 rot_z C -PI_OVER_2
2 rot_x S -PI_OVER_2

A cnot S C vanilla instruction between a store qubit (S) and a communication qubit (C) (as specified in the unit
module) was mapped to the following NV instruction sequence:

0 rot_y C PI_OVER_2
1 rot_x C PI
2 rot_y S PI_OVER_2
3 cx_dir C S PI_OVER_2
4 rot_z C -PI_OVER_2
5 rot_x S -PI_OVER_2
6 rot_y S PI_OVER_2
7 rot_y C PI_OVER_2
8 rot_x C PI

A cphase C S vanilla instruction between a communication qubit (C) and a storage qubit (S) (as specified in the unit
module) was mapped to the following NV instruction sequence:

0 rot_y S PI_OVER_2
1 cx_dir C S PI_OVER_2
2 rot_z C -PI_OVER_2
3 rot_x S -PI_OVER_2
4 rot_y S -PI_OVER_2


